

Course Outline

<u>Day 1</u>

Dimensional Modeling Concepts

- Dimensional Modeling in Context
 - Business Intelligence Defined
 - Data Warehousing Defined
 - Data Mart Defined
- Dimensional Modeling Basics
 - Dimensional Model Defined
 - Dimensional Modeling Defined
 - Business Metrics and Measures Defined
 - Business Metrics Examples
 - Dimensional Data Models
- Comparing E-R and Dimensional Models
 - A Quick Review of E-R Modeling
 - Introduction to Dimensional Models
 - Relational with Additional Constraints
 - A Basis for Comparison
 - Relational for Transaction Processing
 - Dimensional Data for Business Analysis
 - Conformed Dimensions
- Concepts Summary
 - Review of Some Key Points

Module Two

Requirements Gathering for Dimensional Models

- Business Context for Data Modeling
 - o Business Value
 - Business Alignment
 - o Business Process Alignment
- Business Questions as Requirements Models
 - o A Framework for Business Questions
 - o Examples
 - o Refining Business Questions
- Fact/Qualifier Analysis
 - o From Business Questions to Data Requirements
 - Mapping Business Questions
- Requirements Gathering Summary
 - Process Review

Module Three Logical Dimensional Data Modeling

- Modeling Meters and Measures
 - A Group of Related Business Measures
- Modeling Dimensions
 - Adding Dimensions from Qualifiers
 - Dimension Hierarchy
 - Refining the Dimensions
 - Completing the Dimensions
- More about Meters and Measures
 - o Granularity and the Meter
 - Granularity and the Measures
 - o Completing the Meter
- Model Verification
 - Testing the Model
- Logical Modeling Summary
 - o Process Review

Module Four

From Logical Model to Star Schema

- Star Schema Dimensions
 - Naming the Dimensions
 - Modeling Dimension Tables
 - Defining Dimension Table Keys
- Star Schema Fact Tables
 - Modeling the Fact Table
 - Defining the Fact Table Key
 - Supporting Calculated Measures
 - Semi-Additive and Non-Additive Facts
- Star Schema Design Challenges
 - Slowly Changing Dimensions
 - Degenerate Dimensions
 - Junk Dimensions
 - Difficult Situations
- Modeling Process Summary
 - o From Business Requirements to Star Schema

Module Five

Dimensional Data and Business Analysis

- Delivering Business Value
 - Data Enabled Business Analysis
 - Collecting, Analyzing, and Using Business Metrics
- Effective Dimensional Modeling
 - Critical Success Factors
 - Mistakes to Avoid
 - References and Learning Resources

<u>Day 2</u>

Advanced Dimensional Modeling: Techniques for Practitioners

Offered by **Chris Adamson** through **TDWI Onsite Education** The companion course to the book *Star Schema: The Complete Reference.*

Module One Fundamentals

- Dimensional Modeling
 - o Process measurement
 - o Uses beyond database design
- Information Architectures and Dimensional Data
 - o Inmon's CIF Architecture
 - o Kimball's Dimensional Bus
 - o Stand-alone Data Marts
- Fundamental Terms and Best Practices
 - o Facts and dimensions
 - o Surrogate keys, natural keys and slow change processing
 - o Fundamental concepts including grain, sparsity and additivity
 - o Best practices for fact tables and dimension tables
- Implementations
 - o Relational (star and snowflake)
 - o Multidimensional (cube)
 - o Cubes as primary store
 - o Cubes as derived data stores

Module Two Multiple Stars

- Multiple star solutions
- Designing multiple fact tables
 - o Identifying multiple processes
 - o Differences in dimensionality
 - o The pitfalls of single fact table design
- Using multiple stars
 - o How not to query multiple fact tables
 - o The concept of drilling across
 - o What you need to know about your query and reporting tools
- Conformance and business value
 - o High impact business questions span processes
 - o The concept of conformance
 - o Ensuring subject areas work together
 - o Enabling incremental implementation

Module Three Advanced Fact Table Design

- Transaction schemas
 - o Transaction grain
 - o Shortcomings of transaction designs
- Periodic Snapshots
 - o Snapshot grain and period
 - o Semi-additivity, density, and impact on BI
 - o Building both transaction and snapshot schemas
 - o Snapshots and averages
- Accumulating Snapshots
 - o Studying process efficiency
 - o Accumulating metrics in a single row
 - o Lag analysis
 - o Impacts on slow change processing and data integration
 - o Building both transaction and accumulating snapshots
- Factless Fact Tables
 - o Processes that seem to lack metrics
 - o Factless fact tables that track events
 - o Pros and cons of adding constant-value fact
 - o Factless fact tables that track conditions
 - o Comparing conditions to actual events
- Heterogeneous Attributes
 - o Attributes that vary based on category
 - o The impact of modeling a single set of attributes
 - o Core and custom dimensions
 - o Core and custom fact tables
 - o Alternatives to core and custom solutions

Module Four Design and Data Integration

- The Data Integration Process
 - o Loading a dimension table
 - o Loading fact tables
 - o Key lookup processing
- Designing to aid key management

 The impact of slow changes on key lookups
 - o Adding attributes to aid lookup process
- Designing to reduce slow change bottlenecks

 The bottlenecks of slow change processing
 How dimension checksums aid slow change processing
- Specifying data transformation rules

 o How to capture standard translations and data quality rules
 o Why this must be done at design-time
- Invalid or late reference data

- o Receiving valid facts with invalid or missing reference data o Adding rows to dimension tables so that facts can be loaded
- o Adjusting facts when reference data arrives
- Adding columns to support QA o Housekeeping columns in dimension tables o Housekeeping dimensions for fact tables

<u>Day 3</u>

Module Five Advanced Dimension Design

- Understanding hierarchies
 - o Drilling with and without hierarchies
 - o Multiple hierarchies in one dimension
 - o Impact of hierarchies on BI, ETL and DBA perspectives
 - o Why to model hierarchies
 - o Snowflake schemas
- Dimension Reuse
 - o Modeling roles
 - o Querying with roles
- Nulls
 - o Problems introduced by NULL values
 - o Avoiding NULL dimension attributes
 - o Avoiding NULLs with optional relationships
 - o NULL facts

Module Six Advanced Slow Change Processing

- Time-stamped Dimensions
 - o Why type 2 is not good enough
 - o Time-stamped dimensions (transaction dimensions)
 - o Using with a fact table
 - o Hybrid attributes that behave like facts and dimensions
- Mini-dimensions (Types 4 & 5)
 - o Large and expanding dimension tables
 - o The use of a mini-dimension to stem growth
 - o Impact on schema capability
 - o Type 4 and Type 5 slow changes
 - o Loading the mini-dimension
- Current and Previous (Type 3) o Limited access to unchanged value
- Hybrid Responses
 - o Tracking both Type 1 and Type 2 responses
 - o For dimension Attributes (Type 6)
 - o For entire dimension tables (Type 7)

Module Seven Bridge Table Design

- The Dimension Bridge
 - o When a single fact needs to reference more than one dimension row
 - o The "flattening" option
 - o The bridge table
 - o Use of the bridge
 - o Avoiding double counting with an allocation factor
 - o Avoiding double counting by hiding the bridge (sandbox)
- The attribute bridge
 - o A dimension attribute repeats for a single dimension row
 - o The attribute bridge
 - o Use of the bridge and avoidance of double-counting
 - o Bridge table vs. factless fact table
- The hierarchy bridge
 - o Recursive relationships (ragged hierarchies, unbalanced hierarchies, variable depth hierarchies and instance hierarchies)
 - o Flattening and backfilling
 - o The hierarchy bridge and its structure
 - o Using the bridge to "roll up" a recursive hierarchy
 - o Using the bridge to "roll down" the hierarchy
 - o ETL implications of hierarchy change and slow changes

Module Eight Scaling Dimensional Designs

- Scaling and scope
 - o Conformance across subject areas
 - o Conformed dimensions that are not identical
 - o Conformed rollups and overlapping dimensions
 - o An advanced conformance matrix
- Derived schemas and performance
 - o Merged fact tables
 - o Pivoted fact tables
 - o Set operations on fact tables
 - o Sliced or partitioned fact tables
- Aggregate schemas and performance
 - o N-way aggregate design
 - o Aggregate portfolio and impact on throughput
 - o Aggregates and aggregate navigation

Module Nine

Design Tasks and Deliverables

 Design and data architecture o Dimensional design as architecture task

- o Architecture and incremental implementation
- o Implementation without up-front architecture activity
- Design activities
 - o Key design activities
 - o Resources required for design success
 - o Estimating duration of design activities
 - o Requirements, top level design, detailed design and roadmap
- Templates for Capturing Business Requirements
 - o Subject area definition
 - o Metric groups and metric definition
 - o Business hierarchies
 - o Conformance
- Templates for Capturing Design Requirements
 - o Key elements of dimension table design
 - o Key elements of fact table design
 - o Documenting what is not visible
 - o The conformance matrix
 - o The design review
- Detailed design
 - o Attribute level design of fact and dimension tables
 - o Technical design elements (DBA perspective)
 - o Business definitions (business perspective)
 - o Source to target mappings (integration perspective)
- Roadmap
 - o Project definitions
 - o Managing scope of implementations
- Implementation approaches
 - o Time-boxed projects with iteration
 - o Agile projects (with and without up-front discovery)
 - o Typical team member roles for implementation projects

Appendix A

Exercises

- Ten modeling exercises designed to reinforce concepts of each module o Two are completed during the class (one each day)
 - o Students can work through remaining exercises on their own
- Exercise sessions
 - o Students are divided into groups of 4-5 to complete the exercises o Flip chart or white board must be provided for each group o Exercise is discussed by class as a whole upon completion

Appendix B

Exercise Solutions

- Solution pages for each exercise
- Example models and discussion points